aiobs

Minimal, extensible observability for LLM calls with three lines of code.

Observe requests, responses, timings, and errors for your LLM providers. Typed models, pluggable providers, single JSON export.

Supported Providers

  • OpenAI — Chat Completions API (openai>=1.0)

  • Google Gemini — Generate Content API (google-genai>=1.0)

Classifiers

Evaluate model response quality with built-in classifiers:

  • OpenAIClassifier — Uses OpenAI models to determine if responses are good, bad, or uncertain

Evals

Comprehensive evaluation framework for LLM outputs:

  • RegexAssertion — Check output matches regex patterns

  • SchemaAssertion — Validate JSON output against JSON Schema

  • GroundTruthEval — Compare output to expected ground truth

  • HallucinationDetectionEval — Detect hallucinations using LLM-as-judge

  • LatencyConsistencyEval — Check latency statistics

  • PIIDetectionEval — Detect PII leakage in outputs

API Key

An API key is required to use aiobs. Get your free API key from:

👉 https://neuralis-in.github.io/shepherd/api-keys

Set it as an environment variable: export AIOBS_API_KEY=aiobs_sk_your_key_here

Quick Start

from aiobs import observer

observer.observe()    # start a session and auto-instrument providers
# ... make your LLM calls ...
observer.end()
observer.flush()      # writes llm_observability.json

Contents